research papers

Acta Crystallographica Section B Structural Science

ISSN 0108-7681

Sebastian Prinz,* Karine M. Sparta and Georg Roth

Institut für Kristallographie der RWTH Aachen, Jägerstrasse 17-19, 52066 Aachen, Germany

Correspondence e-mail: prinz@xtal.rwth-aachen.de

Temperature dependence of the AV₃O₇ (A = Ca, Sr) structure

The V⁴⁺ (spin $\frac{1}{2}$) oxovanadates AV_3O_7 (A = Ca, Sr) were synthesized and studied by means of single-crystal X-ray diffraction. The room-temperature structures of both compounds are orthorhombic and their respective space groups are *Pnma* and *Pmmn*. The previously assumed structure of SrV₃O₇ has been revised and the temperature dependence of both crystal structures in the temperature ranges 297–100 K and 315–100 K, respectively, is discussed for the first time.

1. Introduction

A wide variety of interesting topologies and phenomena have been discovered in low-dimensional spin $\frac{1}{2}$ compounds. The common structural element in all three compounds discussed in the following is that the V⁴⁺ ion is present with squarepyramidal coordination. The alkaline and alkaline-earth metal intercalated V2O5 compounds are examples of low-dimensional vanadates with interesting physical properties (Ueda, 1998). A gap in the magnetic excitation spectrum (spin-gap) at low temperatures or a spin-Peierls transition have been reported for many of these compounds (Smolinski et al., 1998; Lüdecke et al., 1999; Millet et al., 1998; Korotin et al., 1999, 2000). CaV₄O₉ is another example which has stimulated a lot of interest. It is the first quasi-two-dimensional compound reported to exhibit a spin gap (Taniguchi et al., 1995). Its structure was described in the 1970s (Bouloux & Galy, 1973a), but the isostructural SrV₄O₉ could only be synthesized much more recently (Oka *et al.*, 2000). The AV_4O_9 (A = Ca, Sr) compounds can be characterized as 1/5 depleted square lattices of V4+ and their unusual magnetic properties at low temperatures arise from competing nearest (n.n.) and nextnearest neighbour (n.n.n.) interactions within the $V_4 O_9$ planes (Ueda et al., 1996; Starykh et al., 1996; Sachdev & Read, 1996).

Analogous to the case of AV_4O_9 , the AV_3O_7 (A = Ca, Sr, Cd) compounds can be described as 1/4 depleted square lattices, since every fourth pyramidal site remains empty. The structure of CaV₃O₇ has first been described in a single-crystal X-ray diffraction study (Bouloux & Galy, 1973b). Some 20 years later this structure experienced renewed interest, this time with the focus on the relation between the structural and magnetic properties. It was found that CaV₃O₇ undergoes antiferromagnetic ordering at $T_N \simeq 22$ K (Liu & Greedan, 1993; Harashina et al., 1996) and SrV₃O₇ orders antiferromagnetically below 34.3 K, as evidenced by neutron powder diffraction (Takeo et al., 1999). The detailed spin structures of SrV₃O₇ and CaV₃O₇ have been determined by neutron powder diffraction (Takeo et al., 1999) and Muon Spin Relaxation studies (Fudamoto et al., 2003). The surprising outcome of these studies is that both compounds show a spin

© 2007 International Union of Crystallography Printed in Singapore – all rights reserved

836 doi:10.1107/S0108768107050550

Received 29 August 2007 Accepted 15 October 2007

Table 1

Experimental and refinement details of CaV₃O₇ at selected temperatures.

Full data can be obtained from the CIF file, which has been deposited.

	297 K	250 K	200 K	150 K	100 K
Crystal data					
Chemical formula	CaV_3O_7	CaV_3O_7	CaV ₃ O ₇	$CaV_{3}O_{7}$	CaV_3O_7
M _r	304.9	304.9	304.9	304.9	304.9
Cell setting, space group	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma	Orthorhombic, Pnma
T (K)	297 (1)	250 (1)	200 (1)	150 (1)	100 (1)
a, b, c (Å)	10.446 (3), 10.365 (2), 5.2889 (15)	10.436 (3), 10.367 (2), 5.2921 (15)	10.426 (3), 10.367 (2), 5.2909 (15)	10.416 (3), 10.370 (2), 5.2893 (15)	10.409 (3), 10.374 (2), 5.2876 (15)
$V(Å^3)$	572.6 (3)	572.6 (3)	571.8 (3)	571.3 (3)	571.0 (3)
z`´	4	4	4	4	4
$D_r (Mg m^{-3})$	3.537	3.537	3.542	3.545	3.547
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu ({\rm mm}^{-1})$	5.670	5.671	5.678	5.683	5.687
Crystal form, colour Crystal size (mm)	Parallelepiped, brown $0.3 \times 0.2 \times 0.1$	Parallelepiped, brown $0.3 \times 0.2 \times 0.1$	Parallelepiped, brown $0.3 \times 0.2 \times 0.1$	Parallelepiped, brown $0.3 \times 0.2 \times 0.1$	Parallelepiped, brown $0.3 \times 0.2 \times 0.1$
Data collection					
Diffractometer	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2
Data collection method	Rotation, ω scans	Rotation, ω scans	Rotation, ω scans	Rotation, ω scans	Rotation, ω scans
Absorption correction	Numerical	Numerical	Numerical	Numerical	Numerical
T_{\min}	0.3188	0.3173	0.3174	0.3169	0.3169
	0.4708	0.4708	0.4708	0.4703	0.4703
No. of measured, inde- pendent and observed reflections	2489, 389, 365	2476, 403, 366	2460, 401, 363	2461, 399, 366	2474, 399, 366
	$I_{2} = 2\pi(I)$	$L_{2} = 2 - (I)$	$L_{2} = 2 - (I)$	$L_{2} = 2\pi(I)$	$I_{2} \rightarrow (I)$
Criterion for observed reflections	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$
R _{int}	0.0298	0.0336	0.0331	0.0329	0.0321
θ_{\max} (°)	22.93	22.97	22.98	22.99	22.86
Refinement	_	_	_	_	_
Refinement on	F^2	F^2	F^2	F^2	F^2
$\begin{array}{c} R[F^2 > 2\sigma(F^2)], \ wR(F^2), \\ S \end{array}$	0.0228, 0.0536, 1.277	0.0222, 0.0552, 0.941	0.0220, 0.0567, 0.934	0.0219, 0.0545, 0.929	0.0212, 0.0545, 0.945
No. of reflections	389	403	401	399	399
No. of parameters	38	38	38	38	38
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.0331P)^2], \text{ where } P = (F_o^2 + 2F_c^2)/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0472P)^{2}], \text{ where} P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0493P)^{2}], \text{ where} P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0477P)^{2}], \text{ where} P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0472P)^{2}], \text{ where} P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max}$	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.36, -0.31	0.36, -0.37	0.23, -0.29	0.27, -0.28	0.24, -0.28
Extinction method	SHELXL	SHELXL	SHELXL	SHELXL	SHELXL
Extinction coefficient	0.020 (2)	0.0175 (16)	0.021 (2)	0.0188 (19)	0.0180 (18)

stripe ordering (an arrangement of interpenetrating antiferromagnetic zigzag chains), but the spins are oriented outof-plane in the former and in-plane in the latter case.

Until now only four-circle single-crystal X-ray diffraction data for $Ca_{1-x}Sr_xV_3O_7$ (x = 0, 0.45) and $Cd_{1-x}Ca_xV_3O_7$ (x = 0, 1) at room temperature, as well as measurements of magnetization and electron paramagnetic resonance have been published (Nishiguchi *et al.*, 2002), but no single-crystal data for the end-member SrV_3O_7 were available. The temperature dependence of the two structures have not been reported either. In previous studies SrV_3O_7 was assumed to be isostructural with CaV_3O_7 or to crystallize in a noncentrosymmetric space group. Since structural details such as V– O-V angles, V–V and V–O distances are crucial for the magnitude of the magnetic exchange interactions of the nearest and next-nearest neighbours, the temperature dependence of the structural parameters is reported in detail in this work.

2. Experimental

2.1. Crystal growth

CaO and VO₂ were mixed in a 1:3 molar ratio and pressed into a pellet following the literature procedure (Bouloux & Galy, 1973*b*). The pellet was then placed in an Al₂O₃ crucible that was heated in a furnace under dynamic vacuum conditions to a temperature of 1100 K. After several days the heating was switched off. From the sinter cake single crystals of CaV₃O₇ were isolated. SrV₃O₇ single crystals were grown by a flux method. A salt mixture of LiCl, RbCl and SrCl₂ was first prepared by drying the components separately at 413 K and mixing them in the molar ratio 2:1:1. A 1:1 mixture of $V_2O_3-V_2O_5$ powder was then added to the mixture in the flux:VO₂ molar ratio 2.5:1. The mixture was ground in an agate mortar and then placed in an Al₂O₃ crucible. The crucible was then placed into a glass test tube, which was kept open and immediately placed in a glass gas-washing bottle that was

Table 2

Experimental and refinement details of SrV₃O₇ at selected temperatures.

Full data can be obtained from the CIF file, which has been deposited.

	298 K	250 K	200 K	150 K	100 K
Crystal data					
Chemical formula	SrV_3O_7	SrV_3O_7	SrV_3O_7	SrV ₃ O ₇	SrV ₃ O ₇
M _r	352.44	352.44	352.44	352.44	352.44
Cell setting, space	Orthorhombic, Pmmn	Orthorhombic, Pmmn	Orthorhombic, Pmmn	Orthorhombic, Pmmn	Orthorhombic, Pmmn
group		,,,,	,	,	
T (K)	298 (1)	250 (1)	200 (1)	150 (1)	100 (1)
a, b, c (Å)	5.2979 (8), 10.529 (2),	5.2959 (8), 10.534 (2),	5.2934 (8), 10.537 (2),	5.2909 (8), 10.544 (2),	5.2918 (12), 10.550 (3),
<i>u</i> , <i>b</i> , <i>c</i> (11)	5.3139 (9)	5.3014 (9)	5.2889 (9)	5.2763 (9)	5.2717 (14)
V (Å ³)	296.41 (9)	295.74 (9)	294.99 (9)	294.34 (9)	294.32 (14)
Z	2	2	2	2	2
$D_{\rm r}$ (Mg m ⁻³)	3.949	3.958	3.968	3.977	3.977
Radiation type	5.949 Μο <i>Κα</i>	Μο <i>Κα</i>	Μο <i>Κα</i>	Μο Κα	Μο Κα
No. of peaks for cell	10 159	11 262	11 571	11 695	10 067
parameters	10 155	11 202	11 5/1	11 055	10 007
θ range (°)	3.84-32.1	3.84-32.09	3.85-32.09	3.85-32.09	3.8-32.3
$\mu (\text{mm}^{-1})$	13.513	13.544	13.579	13.608	13.609
Crystal form, colour	Needle, brown	Needle, brown	Needle, brown	Needle, brown	Needle, brown
Crystal size (mm)	$0.15 \times 0.1 \times 0.02$	$0.15 \times 0.1 \times 0.02$	$0.15 \times 0.1 \times 0.02$	$0.15 \times 0.1 \times 0.02$	$0.15 \times 0.1 \times 0.02$
Data collection					
Diffractometer	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2	Stoe IPDS 2
Data collection method	Rotation, ω scans	Rotation, ω scans	Rotation, ω scans	Rotation, ω scans	Rotation, ω scans
Absorption correction	Numerical	Numerical	Numerical	Numerical	Numerical
T_{\min}	0.2196	0.2166	0.2176	0.2166	0.2071
T _{max}	0.5688	0.5682	0.5676	0.5671	0.5669
No. of measured, inde- pendent and observed reflections	5058, 305, 294	5060, 305, 295	5054, 305, 294	5053, 305, 296	5327, 321, 307
Criterion for observed	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$	$I > 2\sigma(I)$
reflections	1 > 20(1)	1>20(1)	1>20(1)	1>20(1)	1>20(1)
R _{int}	0.0649	0.0672	0.0679	0.0704	0.0731
θ_{\max} (°)	25.49	25.82	25.85	25.85	25.48
Refinement					
Refinement on	F^2	F^2	F^2	F^2	F^2
$\frac{R[F^2 > 2\sigma(F^2)]}{S}, wR(F^2),$	0.0329, 0.0777, 1.381	0.0335, 0.0776, 1.243	0.0348, 0.0803, 1.227	0.0362, 0.0799, 1.325	0.0337, 0.0793, 1.242
No. of reflections	305	305	305	305	321
No. of parameters	24	24	24	24	24
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0431P)^{2} + 0.0P],$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0371P)^{2} + 1.0548P], \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0415P)^{2} + 0.9218P], \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0410P)^{2} + 0.4275P], \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0396P)^{2} + 1.0644P], \text{ where}$ $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max}$	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.82, -0.92	0.690.99	0.61, -0.86	0.60, -1.24	0.68, -1.16

flushed with argon gas (Ar 5.0, Air products). The sample was heat treated at 750 K for 31 d in a vertical tube furnace and then slowly cooled down to room temperature. From the crystallized flux material small brown SrV_3O_7 single crystals could be isolated.

2.2. Single-crystal X-ray diffraction

Temperature-dependent single-crystal X-ray diffraction measurements were performed on a two-circle imaging-plate diffractometer (Stoe IPDS 2, Mo $K\alpha$ radiation, tube settings 50 kV and 25 mA, pyrolytic graphite monochromator). The diffractometer was equipped with a Cryostream cryogenic N₂-gas blower. For CaV₃O₇ 19 data sets (ω scans between 0 and

180° for $\varphi = 0^{\circ}$) were collected in the temperature range 100–297 K at intervals of 12.5 K. For SrV₃O₇ 11 data sets (ω scans between 0 and 180° for $\varphi = 0$, 45 and 90° were collected in the temperature range 100–298 K.

The lattice parameters and the intensities of the reflections were obtained with the program *X*-*AREA* (Stoe & Cie, 2002). Numerical absorption corrections *via* symmetry equivalents were performed using the programs *X*-*RED* (Stoe & Cie, 1996*b*) and *X*-*SHAPE* (Stoe & Cie, 1996*a*). The room-temperature structures of CaV₃O₇ and SrV₃O₇ were redetermined using direct methods with the program *SHELXS*97 (Sheldrick, 1997*a*). The refinements were performed with the program *SHELXL*97 (Sheldrick, 1997*b*), as implemented in the program suite *WinGX* 1.64.05 (Farrugia, 1999). Experi-

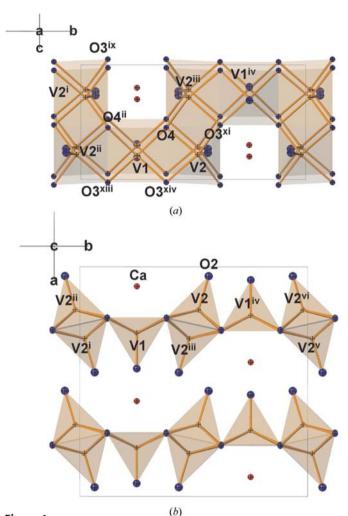
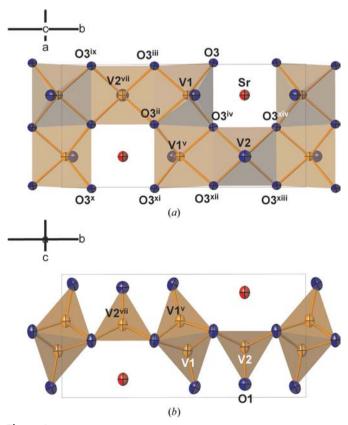


Figure 1

Room-temperature structure of CaV_3O_7 with symmetry codes. (a) Projection onto the *bc* plane; (b) projection onto the *ab* plane. See Table 3 for the symmetry codes. This and the following molecular graphics were computed with *ATOMS*5.1 (Dowty, 2000).

mental details for five of the 19 structure determinations for the Ca compound, and five of the 11 structure determinations for the Sr compound are summarized in Tables 1 and 2, respectively.¹ Full details for refinements of data measured at the other temperatures are included in the CIF.


3. Results

3.1. Room-temperature structure of AV₃O₇ (A = Ca, Sr)

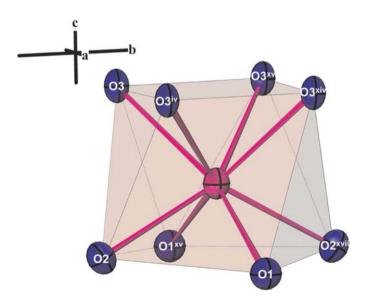
 CaV_3O_7 crystallizes in the orthorhombic space group *Pnma* and consists of layers of VO₅ pyramids pointing up and down alternately with Ca between the layers (Fig. 1). Note that neighbouring V₃O₇ layers are not stacked exactly on top of each other, but are offset with respect to each other, which becomes clear in the projection of the unit cell on the *bc* plane

(Fig. 1*a*). The room-temperature cell parameters (Table 1) agree well with the literature data.

The room-temperature structure of SrV_3O_7 , which is very similar to that of CaV₃O₇, consists of V₃O₇ layers separated by Sr^{2+} ions (Fig. 2). The layers consist of edge- and cornersharing VO₅ pyramids, the apical O atoms of which point up and down alternately. To our knowledge, the room-temperature structure of SrV_2O_7 has not been determined by singlecrystal X-ray diffraction previously. It has either been assumed to be isostructural to CaV₃O₇, the structural parameters of which were used as a starting model in the Rietveld refinement from X-ray and neutron powder diffraction data (Liu & Greedan, 1993), or to crystallize in the noncentrosymmetric space group $Pna2_1$, as deduced from a positive piezoelectricity test (Bouloux & Galy, 1973b). In the present single-crystal Xray diffraction study of SrV₃O₇ a unit cell with a lattice parameter perpendicular to the V_3O_7 layers, which is halved with respect to that in CaV₃O₇, was found. This is due to the presence of a mirror plane *m* instead of a glide plane as in the case of CaV₃O₇. We obtained the following lattice parameters: a = 5.2979 (8), b = 10.529 (2) and c = 5.3139 (9) Å. The structure could not be solved in space groups Pnma or Pna21, as proposed previously, but in the space groups Pmmn and $P2_1mn$. The reflection conditions for both space groups are fulfilled and the two solutions show similar refinement results. In a trial the structure was refined in the space group $P2_1mn$

Figure 2

Room-temperature structure of SrV_3O_7 with symmetry codes. (a) Projection onto the *ab* plane; (b) projection onto the *bc* plane. See Table 4 for the symmetry codes.


¹ Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM5051). Services for accessing these data are described at the back of the journal.

Ca-O2 ^{iii,xviii}	2.346 (4)	V1-V2 ^{i,iii}	3.599 (1)
Ca-O4 ⁱⁱ	2.393 (3)	V1-O1	1.613 (5)
Ca-O3 ⁱⁱ	2.432 (3)	V1-O3 ^{xiii,xiv}	1.959 (3)
Ca-O1 ^{xvi}	2.547 (5)	V1-O4 ⁱⁱ	1.970 (3)
Ca-O1 ^{xvii}	3.540 (5)	V2-O2	1.608 (3)
V2-V2 ⁱⁱⁱ	2.978 (1)	V2–O4 ^{xi}	1.961 (3)
V1-V2	2.994 (1)	V2–O3 ^{xi}	1.966 (3)
$V1^{iv} - V2^{vi}$	3.534 (1)	V2–O3 ^{xiv}	1.969 (3)
V2-O4-V2 ⁱⁱⁱ	98.9 (1)	V2-O3 ^{xi} -V2 ⁱⁱⁱ	98.5 (1)
V1-O4-V2 ⁱⁱⁱ	132.7 (1)	V2-O3 ^{xi} -V1 ^{iv}	128.5 (1)
V1-O4-V2	99.2 (1)	$V2-O3^{xiv}-V1$	99.3 (1)

Table 3 Selected interatomic distances (Å) and angles (°) in CaV_3O_7 at 297 K

as a merohedral twin, but the resulting anisotropic displacement parameters of the O atoms had unreasonably small values, so this space group was rejected. The solution in *Pmmn* was found to be more convincing since the anisotropic displacement ellipsoids of the O atoms were more reasonable, although fewer parameters were used in the refinement.

As mentioned above, VO₅ pyramids are the basic structural building units. In SrV₃O₇ there are two distinct vanadium positions, V1 and V2. V1O₅ pyramids, alternately pointing up and down, form infinite edge-sharing linkages parallel to *a* with V1 showing a site symmetry of *m*... V2O₅ pyramids (site symmetry of *mm*2) link up these chains by edge-sharing parallel to *b*. The V sites have a higher site symmetry in SrV₃O₇ than the corresponding V sites in CaV₃O₇. Consequently, four equivalent V2–O3 basal distances and one short apical vanadyl bond are observed. There are two nonequivalent basal V1–O3 distances which are slightly shorter

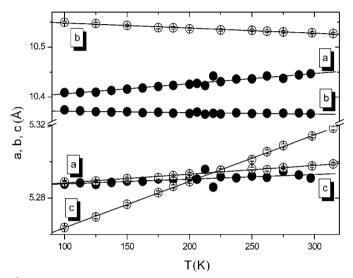
Figure 3

Clinographic view of the SrO_8 distorted tetragonal antiprism with symmetry codes. See Table 4 for the symmetry codes.

Table 4 Selected interatomic distances (Å) and angles (°) in SrV_3O_7 at 298 K.

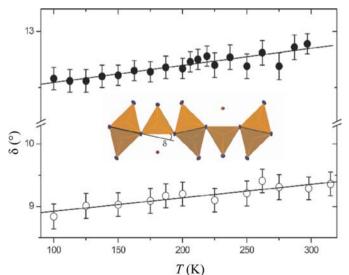
()	0 ()	-
2.4843 (7)	$V1^v - V2^{vii}$	3.625 (1)
2.5659 (4)	$V1-O2^i$	1.619 (6)
2.9764 (4)	V1-O3 ^{ii,iii}	1.958 (4)
3.5198 (2)	$V1 - O3^{iv}$	1.965 (4)
3.5418 (2)	V2-O1 ⁱ	1.607 (9)
2.960 (1)	V2-O3 ^{iv,xii,xiii,xiv}	1.976 (4)
3.012 (2)		
97.6 (2)	V2-O3 ^{iv} -V1	134.2 (3)
99.9 (2)		
	2.5659 (4) 2.9764 (4) 3.5198 (2) 3.5418 (2) 2.960 (1) 3.012 (2) 97.6 (2)	$\begin{array}{cccc} 2.5659 & (4) & V1 - O2^{i} \\ 2.9764 & (4) & V1 - O3^{ii,iii} \\ 3.5198 & (2) & V1 - O3^{iv} \\ 3.5418 & (2) & V2 - O1^{i} \\ 2.960 & (1) & V2 - O3^{iv,xii,xiii,xiv} \\ 3.012 & (2) \end{array}$

Symmetry codes: (i) x, y, z + 1; (ii) $x + \frac{1}{2}, -y + 1, -z + 1$; (iii) -x, -y + 1, -z; (iv) $-x + \frac{1}{2}, y, z$; (v) $x + \frac{1}{2}, -y + 1, -z + 1$; (vi) $x + \frac{1}{2}, -y + 1, -z$; (vii) $x + \frac{1}{2}, y + \frac{1}{2}, -z + 1$; (vii) $x - \frac{1}{2}, y - \frac{1}{2}, -z$; (ix) $-x, y + \frac{1}{2}, -z + 1$; (x) $-x + 1, y - \frac{1}{2}, -z + 1$; (xi) -x + 1, -y + 1, -z + 1; (xii) x + 1, y, z; (xii) $x + 1, y + \frac{1}{4}, z$; (xiv) $-x + \frac{1}{2}, y + \frac{1}{4}, z$; (xv) $x, y + \frac{1}{4}, z$; (xvi) $x, -y + \frac{3}{2}, z$.


than the V2-O3 basal distances. The vanadyl bond found for V1 is slightly longer than that of V2. Selected interatomic distances and angles in CaV₃O₇ and SrV₃O₇, referred to in the following, are summarized in Tables 3 and 4. Three direct V-V interactions corresponding to the three different V-Vdistances in SrV₃O₇ can be distinguished. The shortest or nearest neighbour (n.n.) V-V distance is that between adjacent V1O₅ pyramid centers in the infinite chains of VO₅ pyramids, parallel to a. The second shortest V–V distance is that between nonequivalent adjacent VO₅ pyramids, *i.e.* parallel to **b**. The n.n. and second shortest V–V distances are of similar length. The third shortest V-V distance, and by far the longest, is that between nonequivalent like-oriented VO₅ pyramids sharing corners. In CaV₃O₇ the situation is somewhat more complicated because four rather than three relevant V–V distances are distinguishable.

 Sr^{2+} ions (site symmetry of *mm*2) are located between the layers and coordinated by eight O atoms forming a distorted tetragonal antiprism (Fig. 3). The Sr-O distances can be grouped into three distance ranges: There are two rather long Sr-O1 distances of 2.975 (4) Å, two short Sr-O2 distances of 2.483 (6) Å and four equivalent intermediate Sr-O3 distances of 2.565 (4) Å. As opposed to four different O atoms in CaV₃O₇ there are only three nonequivalent O atoms present in the Sr compound. O1 and O2 occupy special positions of site symmetry mm2 and m., while O3 is located on a general position. The latter plays a major role in exchange interactions since antiferromagnetism in insulators necessarily involves V-O-V superexchange interactions (Liu & Greedan, 1993). Bouloux & Galy (1973b) introduced the tilt angle α between the basal planes of the V1O₅ and V2O₅ pyramids as a means of characterizing the degree of buckling of the V_3O_7 layers. In the following the tilt angle will be named δ , however, in order to avoid confusion with the linear expansion coefficients α_{ij} . When comparing the roomtemperature structures of CaV₃O₇ and SrV₃O₇ one can notice a difference in the tilt angles [12.89 (9) and 9.3 (2) $^{\circ}$], which is a consequence of the different sizes of the two alkaline-earth cations. Bouloux & Galy (1973b) proposed that the larger size of the Sr²⁺ cation leads to a less pronounced buckling of the V_3O_7 layers compared with that in the Ca compound, which is

consistent with the smaller b lattice parameter observed for CaV₃O₇.


3.2. Temperature dependence of the AV_3O_7 (A = Ca, Sr) structure

There is no indication of a structural phase transition in the temperature range from room temperature down to 100 K for either compound. The linear thermal expansion coefficients show the same sign for both compounds. The α_{11} values parallel to a and α_{33} values parallel to c in SrV₃O₇ are twice as large as the corresponding α_{33} and α_{11} values in CaV₃O₇. In

Figure 4

Temperature dependence of the cell parameters of CaV_3O_7 and SrV_3O_7 , obtained from single-crystal X-ray diffraction experiments. The least-squares fit lines for *a*, *b* and *c* are included in the figure. Note: In this and the following figures filled circles are used to denote CaV_3O_7 and empty circles to indicate SrV_3O_7 . If standard uncertainties are not drawn in any of the figures they are below the symbol size.

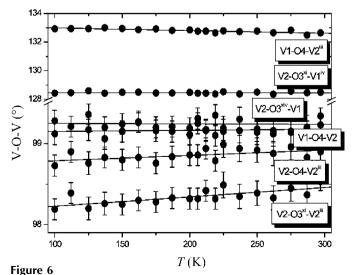


Figure 5

Temperature dependence of the tilt angle δ (shown in the inset) in CaV₃O₇ and SrV₃O₇. The least-squares fit lines are included in the figure.

the case of α_{22} they are even three times as large (Table 4). It should be noted that the in-plane lattice parameters b and c (b and a) for CaV_3O_7 (SrV₃O₇) show trends which are opposite each other: While a negative thermal expansion is observed parallel to b, i.e. perpendicular to the direction of buckling of the V_3O_7 layers, positive thermal expansion takes place in the direction at right angles to it (Fig. 4). The negative linear thermal expansion α_{22} parallel to **b** observed for both compounds corresponds to an increasing corrugation of the layers with increasing temperature, which is expressed by a linear increase of the tilt angle δ (Fig. 5). The linear-fit curve of the temperature dependence of δ shows slopes of $1.2(2) \times 10^{-4} \text{ K}^{-1}$ and $2.4(3) \times 10^{-4} \text{ K}^{-1}$ for CaV₃O₇ and SrV_3O_7 . The negative thermal expansion parallel to **b** results from a competition between thermal expansion and an increasing corrugation of the layers. There are only minimal changes of less than 0.01 Å in the V-O bond lengths of the VO₅ pyramids in both CaV₃O₇ and SrV₃O₇ over the investigated temperature range. The VO₅ pyramids can thus be regarded as rigid units. In CaV₃O₇ the VO₅ pyramids have the freedom to rotate around an axis parallel to *c* running through the O3 and O4 atoms; in SrV₃O₇ the VO₅ pyramids similarly rotate around an axis parallel to *a* running through the O3–O3 edge. This rotational movement can serve as an explanation for the observed negative thermal expansion parallel to **b**.

Both V2–O–V2 bond angles in CaV₃O₇ show a linear increase with increasing temperature, which is consistent with the positive thermal expansion along c, *i.e.* in the direction of infinite chains of edge-sharing VO₅ pyramids (Fig. 6). A linear increase is also observed in SrV₃O₇ for the V1–O3–V1 bond angles, which is consistent with the positive thermal expansion parallel to a (Fig. 7). With increasing temperature similar trends are observed for both CaV₃O₇ and SrV₃O₇: n.n. V–V distances, *i.e.* the distances between equivalent V atoms in the infinite chains of VO₅ pyramids show a linear increase of

Temperature dependence of selected V-O-V angles in CaV₃O₇. The least-squares fit lines are included in the figure. See Table 3 for the symmetry codes.

0.002 (1) and 0.0071 (6) Å in total over the temperature range from 100 K to room temperature, while the distances between nonequivalent V atoms, *i.e.* the V–V distances between VO₅ pyramids pointing upwards and downwards, perpendicular to the infinite chains show a minimal decrease and stay invariant within 1 s.u. (Fig. 8).

4. Conclusions

We have synthesized single crystals of SrV_3O_7 in a molten salt flux. The structure of SrV_3O_7 has been solved by single-crystal X-ray diffraction in the space group *Pmmn* with the lattice parameters a = 5.2979 (8), b = 10.529 (2), c = 5.3139 (9) Å; the

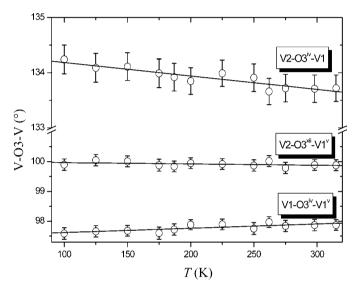


Figure 7

Temperature dependence of the V-O3-V angles in SrV_3O_7 . The least-squares fit lines are included in the figure. See Table 4 for the symmetry codes.

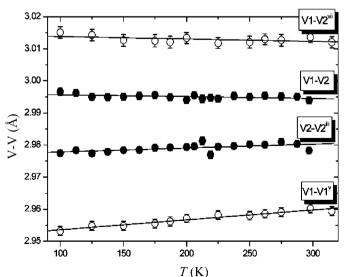


Figure 8

Temperature dependence of selected V–V distances in CaV_3O_7 and SrV_3O_7 . The least-squares fit lines are included in the figure. See Tables 3 and 4 for the symmetry codes.

structure of CaV₃O₇ has been redetermined in the space group *Pnma* with lattice parameters identical (within 1 s.u.) to those reported in the literature. The temperature dependence of the AV_3O_7 (A = Sr, Ca) structures was investigated by single-crystal X-ray diffraction in the temperature range from 315 to 100 K and from 297 to 100 K, respectively. The AV_3O_7 (A = Sr, Ca) structure shows a negative thermal expansion of the lattice parameter perpendicular to the infinite chains of edge-sharing VO₅ pyramids which results from a competition between thermal expansion and an increasing corrugation of the V_3O_7 layers. The other two lattice parameters show positive thermal expansion. The distinctly different magnetic structures of the two compounds observed by another group (Takeo et al., 1999) need to be readdressed by taking into consideration the fact that the two compounds are not isostructural, as previously assumed.

References

- Bouloux, J.-C. & Galv, J. (1973a). Acta Cryst. B29, 1335-1338.
- Bouloux, J.-C. & Galy, J. (1973b). Acta Cryst. B29, 269-275.
- Dowty, E. (2000). *ATOMS for Windows*, Version 5.1. Shape Software, Kingsport, Tennessee, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fudamoto, Y., Gat, I. M., Larkin, M. I., Merrin, J., Nachumi, B., Savici, A. T., Uemura, Y. J., Luke, G. M., Kojima, K. M., Isobe, M., Ueda, Y., Taniguchi, S. & Sato, M. (2003). *Physica B*, **329–333**, 717–718.
- Harashina, H., Kodama, K., Shamoto, S., Taniguchi, S., Nishikawa, T., Sato, M., Kakurai, K. & Nishi, M. (1996). J. Phys. Soc. Jpn, 65, 1570–1573.
- Korotin, M. A., Anisimov, V. I., Saha-Dasgupta, T. & Dasgupta, I. (2000). J. Phys. Condens. Matter, 12, 113–124.
- Korotin, M. A., Elfimov, I. S., Anisimov, V. I., Troyer, M. & Khomskii, D. I. (1999). *Phys. Rev. Lett.* 83, 1387–1390.
- Liu, G. & Greedan, J. E. (1993). J. Solid State Chem. 103, 139-151.
- Lüdecke, J., Jobst, A., van Smaalen, S., Morré, E., Geibel, C. & Krane, H.-G. (1999). *Phys. Rev. Lett.* **82**, 3633–3636.
- Millet, P., Satto, C., Bonvoisin, J., Normand, B., Penc, K., Albrecht, M. & Mila, F. (1998). *Phys. Rev. B*, **57**, 5005–5008.
- Nishiguchi, N., Onoda, M. & Kubo, K. (2002). J. Phys. Condens. Matter, 14, 5731–5746.
- Oka, Y., Yao, T., Yamamoto, N., Ueda, M. & Maegawa, S. (2000). J. Solid State Chem. 149, 414–418.
- Sachdev, S. & Read, N. (1996). Phys. Rev. Lett. 77, 4800-4803.
- Sheldrick, G. M. (1997a). SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.
- Smolinski, H., Gros, C., Weber, W., Peuchert, U., Roth, G., Weiden, M. & Geibel, C. (1998). Phys. Rev. Lett. 80, 5164–5167.
- Starykh, O. A., Zhitomirsky, M. E., Khomskii, D. I., Singh, R. R. P. & Ueda, K. (1996). Phys. Rev. Lett. 77, 2558–2561.
- Stoe & Cie (1996a). X-SHAPE. Stoe & Cie GmbH, Germany.
- Stoe & Cie (1996b). X-RED. Stoe & Cie GmbH, Germany.
- Stoe & Cie (2002). X-AREA. Stoe and Cie GmbH, Germany.
- Takeo, S., Yosihama, T., Nakajima, K., Isobe, M., Ueda, Y., Kodama, K., Harashina, H., Sato, M., Ohoyama, K., Miki, H. & Kakurai, K. (1999). J. Phys. Chem. Solids, 60, 1153–1155.
- Taniguchi, S., Nishikawa, T., Yasui, Y., Kobayashi, Y., Sato, M., Nishioka, T., Kontani, M. & Sano, K. (1995). J. Phys. Soc. Jpn, 64, 2758–2761.
- Ueda, Y. (1998). Chem. Mater. 10, 2653-2664.
- Ueda, K., Kontani, H., Sigrist, M. & Lee, P. A. (1996). *Phys. Rev. Lett.* **76**, 1932–1935.